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ABSTRACT  
 
The dynamic response of a jointed beam was measured in 
laboratory experiments. The data were analyzed and the 
system was mathematically modeled to establish plausible 
representations of joint damping behavior. Damping is 
examined in an approximate, local linear framework using 
log decrement and half power bandwidth approaches. In 
addition, damping is modeled in a nonlinear framework 
using a hybrid surface irregularities model that employs a 
bristles-construct. Experimental and analytical results are 
presented. 
 
NOMENCLATURE 
 
[c]  Viscous damping matrix 
[k]  Stiffness matrix 
[m ]  mass matrix 
[Nk ]  Number of bristles times stiffness 
[q]  Forcing function vector 
{R ),( xx ? } Vector on nonlinear restoring force 
{x}  Displacement 
?   Average fraction of bristles in contact 
? , ?0, ?1  Bristle model parameters  
 
1.  INTRODUCTION 
 
The effects of sliding friction in bolted lap joints are of great 
importance to the structural design community. Friction 
may be desirable in a mechanical design, because it 
dissipates energy, thereby diminishing response levels, or 
it may be undesirable because it dissipates energy where 
that effect is unwanted or makes structural control more 
difficult. In order to increase the utility of joint fiction in the 
design process, it is imperative that we establish predictive 
models of joint fiction behavior. Most structural dynamic 

analyses performed today require experiments to calibrate 
the damping in models, or they simply select damping 
based on speculation. 
 
Friction occurs in all mechanical systems that execute 
structural dynamic response. Damping effects occur as the 
result of (1) energy dissipation at the microscopic level in 
materials, (2) radiation of energy into the medium that 
surrounds a structure (air, water, soil, or other mechanical 
components), (3) the interactions between elements in a 
structure, and (4) components that that are designed to 
remove energy from a system in a controlled manner. 
 
Numerous models that characterize the behavior of 
frictional joints are described in the literature. These range 
from simple models that are used for computational 
convenience or to describe phenomenology in a simple 
manner, to more complex non-phenomenological models 
that match energy dissipation characteristics seen in 
experimental settings, to phenomenological models that 
seek to mimic supposed behavior at joint interfaces. 
 
The simplest model for damping is the viscous damping 
model described in practically all texts on structural 
vibrations. (see , fore example, Inman, 1996). The simplest 
phenomenological model for friction is the Coulomb model 
described for example in Haug (1992). 
 
Non-phenomenological models for friction seek to model 
damping behavior based on experimental laboratory of field 
observation. Examples are Stribeck’s model (1902). 
Masing-Element models (Ottl, 1981) and the Valanis model 
(1971). 
 
Phenomenological models seek to simulate damping 
behavior by mathematically characterizing physical 



behavior of a joint. Examples are the elasto-slip model 
(Gaul and Nitsche) and the bristle model (Haessing and 
Friedland, 1991). A form of the latter will be considered in 
this investigation.  
 
Gaul and Nitsche present a thorough and wide-ranging 
summary of friction models. 
 
This paper presents an investigation into friction damping 
and vibrations of beams with bolted lap joints. Two 
geometrically identical specimens with different 
characteristics are considered. The specimens are shown 
schematically in Figure 1.  The first specimen is a built-up 
beam.  It consists of two long beam segments joined at the 
center by symmetric plates. The plates connect to the 
beams in a lap joint configuration, fastened with a bolt. The 
second specimen has geometry identical to the first, but it 
is a monolithic structure machined from a single piece of 
steel. Experimental system dimensions will be given later. 
 
Jointed Beam 
    
 
 
 
 
 
 
Monolithic Beam 
 
 
 
 
 
 
             
          Figure 1. Schematics of Beam Specimens 
 
It is shown later that the two experimental specimens 
exhibit substantially different dynamic behavior.  While their 
modal frequencies are very close, their damping behaviors 
are very different. Figure 2 shows why. During vibration the 
jointed beam system assumes shapes like that shown in 
Figure 2.  At the interface between each beam segment 
and the plates that support it, longitudinal stress in the 
beam is great and longitudinal stress in the plates that 
form the joint is near zero. In view of this slippage 
(sometimes too small to measure accurately) occurs.  
Because the surface of any real structure element is rough, 
to some extent, energy dissipation occurs. It is the effects of 
this energy dissipation that we seek to characterize trough 
experiments and to model mathematically.  
 
 
 
 
 

 
 
 
 
 
               Figure 2. Jointed Beam Schematic. 
 
In the following sections we will (1) describe the 
experimental configuration and the experiments (2) 
describe experimental measures of system damping, and 
show how they can be estimated using measured data, (3) 
describe an approximate finite element model of the 
system, and show how it can be used to test friction 
models for their plausibility, and (4) present numerical and 
experimental results. Finally, conclusions will be presented 
and recommendations offered. 
 
2.  EXPERIMENTAL CONFIGURATION 
 
The two test structures shown in Figure 1 were evaluated in 
the experiment.  The first structure consisted of two ten inch 
long steel beams connected by a lap joint.  Dimensions 
are provided in Figure 3.  The beam thickness and width 
are ¼ inch and 1.0 inch respectively.  Two ¼ inch steel 
bolts with washers were used to sandwich the ends of the 
ten inch beams between two 3 ¼ inch long plates of steel.  
The bolts were tightened to 85 in-lbs.  A ½ inch space was 
left between the ends of the 10” beams. 
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            Figure 3.  Segmented Beam Geometry 
 
The second structure is an approximate geometric replica 
of the jointed beam. It is to be used as an experimental 
control.  It was machined from a single piece of steel and 
shown in Figure 4.  Bolts were tightened through the holes 
in the structure as was done on the jointed beam.  This 
was not required structurally in the solid beam, however, it 
was done to maintain similarity of the geometry and mass 
of  the two beams. 
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                  Figure 4.  Solid Beam Geometry 
 
 
During testing the beams were suspended from two 
approximately 3 ft. long sections of medical tubing in order 
to simulate a free-free boundary condition.  The beams 
were supported approximately 2 inches from each end.  
The beams were suspended so that the flexible plane of 
vibrations was oriented horizontally (Figure 5). 
 

 
 
                       Figure 5. Test Configuration  
 
The beams were instrumented with one Endevco Isotron® 
2250A-10 accelerometer fixed with wax to the beam, 
outside the joint near the center (Figure 6).  The 
accelerometer sensitivity and range were 10.01 mV/g and 
+/- 500 g respectively.  A PCB impact hammer with a white 
plastic tip was used to excite the beams at various levels.  
Impacts were applied on the beam center axis, one inch 
from the end.  The force transducer on the hammer (PCB 
086C03) has a range of 0-500 lbf. and sensitivity of 10 
mV/lbf.  
 
 

 
 

    Figure 6.  Beam Instrumentation 
 

Force and acceleration data were collected through the 
Data Physics Corporation ACE DP104 FFT Analyzer two 
channel data acquisition system using SignalCalc ACE 
Dynamic Signal Analyzer software on a laptop computer 
running Microsoft Windows98.  Data were recorded for 
4.096 s at a rate of 2000 samples/s.  This indicates a 
Nyquist frequency of 1000 Hz.  The data were lowpass 
filtered (for anti-aliasing) at 781 Hz. The AC filter was set to 
5 Hz.  The data acquisition system was triggered when the 
hammer force surpassed 5 lbf.  A 20 sample buffer was 
included at the beginning of each run.  Twenty runs were 
averaged to estimate the beam frequency response 
functions.  However, each time response was saved 
individually.  The time histories were exported as ASCII text 
files to be analyzed in MATLAB.  Figure 7 shows estimated 
frequency response functions for the beams. 
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Figure 7.  Sample Frequency Response Functions of 
Jointed and Solid Beams 
 
Though substantial differences in some measures of 
behavior were anticipated, there are some clearly  
noticeable similarities.  Specifically, the modal frequencies 
of the two experimental specimens are close.  The first 
three modal frequencies of the jointed beam are 125, 326, 
and 689 Hz.   The first three modal frequencies of the 
monolithic beam are 137, 339 and 750 Hz.  This indicates 
that the two structures have very similar mass and stiffness 
characteristics.  It is shown later that this similarity does not 
extend to the dissipative characteristics of the beams.  
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3.  ANALYSIS OF EXPERIMENTAL DATA 
 
Two approaches are used in this investigation to 
characterize energy dissipation in the beam systems under 
consideration. First, linear models are used to describe 
energy dissipation realized in the experimental systems. 
Later, linear and nonlinear models are used to describe 
energy dissipation in mathematical models of the physical 
systems. 
 
Two linear frameworks are used to characterize the beams’ 
experimental behavior realized in the laboratory. These are 
the log decrement and half power bandwidth frameworks. 
The log decrement approach is implemented in a local 
linear construct to approximate energy dissipation in both 
beams. This is the primary approach to experimental 
characterization of the beams. 
 
To apply the log decrement approach, the beam was 
excited as described in the previous section. When the 
excitation was no longer active, the free decay of the beam 
was observed. From a separate analysis, the modal 
frequencies of each beam were assessed. Then each 
oscillatory decaying acceleration signal was low pass 
filtered between the first and second oscillatory modes to 
eliminate higher mode contributions. (Note that two very 
low frequency rigid body-type modes associated with 
motion of the beam on its very soft elastic supports did not 
appear in the data because, as mentioned previously, the 
measured data were high pass filtered at about 5 Hz.)  
 
To establish the system decay characteristics accurately, 
the analytic function of the Hilbert transform was computed 
for each filtered oscillatory signal. This function is an 
approximate envelope of the signal. In all cases it forms a 
decaying, approximately exponential curve.  
 
An analysis program divides the decay curve into ten 
segments that overlap 50 percent. It retains data whose 
amplitudes are greater than 10 percent of the peak 
amplitude. The program estimates the average amplitude 
of the data in each segment. It then takes the natural 
logarithm of each data segment and fits a straight line to 
the data using a least squares approach. The system 
damping factor in the first oscillatory mode is inferred from 
the parameters of the straight line. The damping factor in 
each segment is associated with the average amplitude of 
motion during that segment. Damping versus amplitude is 
plotted using measurements from several tests. Some 
results are shown in the experimental  results section. 
 
The plots described above supply a visual means for 
determining system linearity. When the estimates of 
damping factor plotted as a function of amplitude form a 
horizontal line, the system mode can be inferred to be 
linear with damping factor that is constant over all 
response amplitudes.  When the estimates of damping 

factor plotted as a function of amplitude form a curve with 
variable ordinate, then the damping coefficient is a 
nonlinear function of amplitude. When such a curve 
appears to have a simple form it may be possible to 
approximate the amplitude dependence of damping factor 
on displacement or velocity amplitude. The manner in 
which the damping factors were established implies that 
these experimental systems can be treated as local linear. 
 
The half power bandwidth estimate uses MATLAB’s 
Transfer Function Estimate (TFE) program to determine 
the system’s frequency response function (FRF).  It takes 
multiple measured acceleration vectors, windows them, 
and concatenates them to create one continuous vector.  
Except for windowing, the same is done for the impulsive 
forces.  The excitation and response vectors are inputs to 
the TFE program.  The resulting FRF is input to a modal 
frequency approximation program, which records the 
modal frequencies and the corresponding magnitudes of 
the FRF.  The first mode is used for the half power 
bandwidth analysis.  The damping coefficient is estimated 
in the usual manner. This approach is only used to check 
the results of the log decrement analysis. 
 
4.  MATHEMATICAL MODEL 
 
Simple finite element models of the jointed and monolithic 
beams were created.  The FE models use the structural 
dynamic framework of the simultaneous ordinary 
differential equation given by 
 

 ? ?? ? ? ? ? ?qxxRxm ?? ),( ???      (1) 

 
where x is displacement at the system degrees of 
freedom, dot denote differentiation with respect to time, [m ] 
is the mass matrix, {R} is the vector of nonlinear restoring 
force functions (dependent on displacement and velocity), 
and {q} is the forcing function vector.  Initial conditions 
must be specified to solve the equation of motion. 
 
The monolithic beam was modeled in the linear 
framework.  The restoring force governing the system is  

 

 ? ? ? ?? ? ? ?? ?xkxcxxR ?? ??),(     (2) 

 
where [c] and [k] are the viscous damping and stiffness 
matrices.   
 
The operations of the FE code include (among other 
things) synthesis of the mass and stiffness matrices, 
eigenvalue analysis (for linear problems), and solution of 
the system of ordinary differential equations.  The code is 
implemented in MATLAB.  Beam elements with two 
degrees of freedom (rotational and translational) are used 
to construct  the stiffness and mass matrices.  The mass 
matrix is diagonal.  The built in eigenvalue analysis (eig) is 



used to solve the eigenvalue problem.  The  results are 
presented later. 
 
Jointed beam analysis requires the capability to solve 
nonlinear ordinary differential equations.  The nonlinear 
behavior is approximated by simplifying equation 1 by 
constraining system motion to a single linear mode.  
Specifically, the vector displacement and velocity 
responses of the system were approximated using  
 

 ? ? }){()}({},){()( kkkk ttxttx ???? ?? ??  (3) 

 
where ?k(t) is displacement in the kth modal coordinate, 
??k(t) is the corresponding velocity and ? k is the kth 
orthanormal mode shape.   It is recognized that this 
approximation can never converge to the exact solution.  
However, experimental observations indicate that this is an 
accurate approximation.  Thus the restoring force for the 
nonlinear system is modeled as  
 

 ? ? ? ?),(}]{[}]{[),( xxRxkxcxxR nl ??? ???  (4) 

 
General system damping is modeled as viscous.  
{Rnl ),( xx ? } is zero except where degrees of freedom are 
attached with nonlinear elements. 
 
Figure 7 shows a schematic of part of the FE model.  Beam 
elements are shown as blocks.  The nonlinear connections 
are included in {Rnl ),( xx ? }. 
 

Not to Scale 

Rigid Connection 

Nonlinear Connection 
 

 
Figure 7. Nonlinear Finite Element Model Schematic 
 
Friction is modeled using a form of the bristles construct 
often referred to as the Lu-Gre model (see Gaul and Nitche 
and Haessing and Friedland, 1991).  The assumptions 
underlying the model follow.  Opposing frictional surfaces 
are irregular and the irregularities can be modeled with 
bristles.  When opposing surfaces move relative to one 
another some bristles establish and/or maintain contact 
while others lose contact.  The bristles in contact and this 
results in a displacement related motion resistance.  
Based on experimental evidence, it is assumed that the 
fraction of bristles in contact is a function of velocity.  Based 
on these assumptions the restoring force, opposing 
motion at the frictional joint is 

 

 xNkR ?? ?   (4) 

 
where ?  = average fraction of bristles in contact, N = 
number of bristles, k = bristle stiffness, ? x = change in 
displacement over time interval of interest.  For this 
investigation ?  was given the form 
 

 1
2/

0

22

??? ? ?? ?ve  (5) 

 
where ? , ?0, and ?1 are parameters of the model.  A typical 
example of ?  is shown in Figure 8. 
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Figure 8. Percentage of bristles in contact,  ? (v) 
 
Our experimental results (summarized in the following 
section) showed that the bristle model incorrectly predicts 
the qualitative behavior of the lap jointed beam.  The model 
can be modified by inserting explicit dependence on 
velocity. When this is done, energy dissipation in the 
mathematical model of the beam can be made to match 
the experimental results.  The model we chose to use is  
 

 xNkvR ?? ?4
1

  (6) 

 
This restoring force equals zero at zero velocity. A graph 
showing the relationship of the restoring force to velocity 
and change in displacement, R(v,?? x), is shown in Figure 9.  
 



 
 

Figure 9. Absolute value of restoring force,  R(v,?? x) 
 
5.  EXPERIMENTAL RESULTS 
 
The experiments described in a previous section were 
performed and system excitations and responses were 
measured. Two measured acceleration response time 
histories are shown in Figures 10 and 11. The first is the 
low pass filtered acceleration response of the jointed beam 
with filter cutoff frequency of 240 Hz. The second is the low 
pass filtered acceleration response of the monolithic beam 
with filter cutoff frequency of 240 Hz. Below each time 
history is the envelope formed by the analytic function of the 
Hilbert transform of the response time history. Though not 
apparent from the time histories, the fundamental 
frequency of response of the jointed beam is 125 Hz, and 
that of the monolithic beam is 137 Hz. It is clear from the 
graphs that the average decay rates of the jointed and 
monolithic beams differ greatly.  
 

 
 
Figure 10. Typical response time history and its envelope 
for the jointed beam. 
 

 
Figure 11. Typical response time history and its envelope 
for the monolithic beam. 
 
The amplitude decay signals were analyzed as specified in 
the Analysis of Experimental Data Section. Local linear 
estimates of damping factors were computed for both 
beams and are shown in Figures 12 and 13.  Both figures 
depict local linear estimates of damping factors as a 
function of velocity amplitude. The former presents this 
information for the monolithic beam; the latter for the jointed 
beam. Each figure presents the results of 20 tests. The 
data are scattered because (1) the measurements include 
random noise, and (2) the system, environment, and 
boundary conditions vary slightly from one test to the next.  
 

 
 
Figure 12. Estimates of local linear damping factor versus 
velocity amplitude for the monolithic beam. 
 



 
Figure 13. Estimates of local linear damping factor versus 
velocity amplitude for the jointed beam. 
 
The data in Figure 12 appear to indicate that damping level 
is constant with respect to amplitude, for the monolithic 
beam, over the range of amplitudes considered in these 
experiments. The sample mean of the damping factor 
estimates in Figure 12 is 0.22 percent. 
 
In contrast, the data in Figure 13 show that damping 
increases with velocity amplitude in the jointed beam. Over 
the range of amplitudes considered in those experiments 
local linear damping factor estimates vary from about 0.3 
percent at an amplitude of 0.5 in/s to about one percent at 
an amplitude of 3.5 in/s. It is clear that the slope of the 
mean of the damping factors diminishes with increasing 
velocity amplitude. This is to be expected because (1) 
damping effects cannot increase without bound, and (2) the 
physical phenomenon may restrict damping effects to 
some upper limit. 
 
The average damping factor of the two systems was 
estimated using the half power bandwidth approach. The 
damping factor of the monolithic beam was estimated to be 
0.24 percent, and that of the jointed beam was estimated to 
be 0.64 percent. These values tend to confirm the results 
shown in Figures 12 and 13, because they represent 
averages formed using responses at all levels. 
 
 
6.  ANALYTICAL RESULTS 
 
The linear and nonlinear analyses described in the 
Mathematical Model Section were performed with the 
objective of simulating the behavior of the two experimental 
systems. Both linear and nonlinear analyses are modal-
based. The response in a single mode is considered. This 
modal analysis is exact for the linear system, but only an 
approximation for the nonlinear system.  
 

Modal frequencies for the linear system were estimated as 
134, 333, and 730 Hz (versus 137, 339, and 750 Hz, for the 
monolithic experimental system). The modal analysis that 
forms the basis for analysis of the nonlinear beam yielded 
modal frequencies of 116, 339, and 624 Hz (versus 125, 
326, and 689 for the jointed experimental system). The 
reason for the differences between the analyzed modal 
frequencies and those experimentally obtained is primarily 
the imperfection of the mathematical models.  The form of 
the friction model is given in Eq. (5).  The parameters used 
in this investigation are: ? ?= 0.2, ?  = 0.3, ?1 = 0.7 and Nk= 
2.5 x 109. 
 
The analyzed velocity response time histories of the linear 
and nonlinear beams in their first oscillatory modes are 
shown in Figures 14 and 15, along with their envelopes as 
represented by the analytic function of the Hilbert transform. 
(Velocity is shown because only displacement and velocity 
are computed.) 
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Figure 14. Computed velocity response of linear system, 
and its envelope. 
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Figure 15. Computed velocity response of nonlinear 
system, and its envelope. 
 
 
The analyzed time histories clearly mimic the experimental 
measurements. That is, the simulated motion in the jointed 
beam decays more rapidly than the corresponding motion 
in the monolithic beam. Further, the frequencies of motion 
accurately duplicate the fundamental frequencies of the 
experimental beams, but this should be expected because 
the modal approximation forces motion to occur at a 
particular frequency. 
 
As for the experimental data, local linear damping factor 
estimates from the analyzed responses were computed. 
The results are shown in Figures 16 and 17.  
 

 
 
 
Figure 16. Estimates of local linear damping factor versus 
velocity amplitude for the linear beam model. 
 

 
 

 

 
Figure 17. Estimates of local linear damping factor versus 
velocity amplitude for the nonlinear beam model (solid 
line). The data from Figure 13 are also shown for reference. 
 
 
Figure 16 shows that damping in the linear model is a 
constant. This is appropriate because it is constrained to 
be so. 
 
Figure 17 shows that the local linear damping factor in the 
nonlinear beam model is variable and resembles the 
mean of the experimental data obtained from experiments 
on the jointed beam. This shows that the mathematical 
model for friction given by Eq. (6) plausibly explains energy 
dissipation in the jointed beam. Though Figure 17 
demonstrates the plausibility of the modified bristle model, 
much more experimentation and analysis are required to 
demonstrate its optimality.  
 
7.  CONCLUSIONS 
 
Experiments were performed on two simple geometrically 
identical beams to characterize nonlinear lap joint behavior. 
The beams were impact tested and response decay 
characteristics were used to infer modal damping. The 
experimental results were cast as local linear damping 
factor versus velocity amplitude. A monolithic beam 
displayed constant damping behavior. A lap jointed beam 
displayed damping that is an increasing function of 
amplitude. 
 
Approximate analyses were performed to test the 
plausibility of a model for joint friction. Both linear and 
approximate nonlinear finite element models for beam 
behavior were developed. The modal frequencies of the 
linear model matched the corresponding values for the 
monolithic system closely. The approximate nonlinear 
analysis was used to develop the relation between local 
linear damping factor and velocity amplitude. The analytical 
results matched the experimental results closely. This 
demonstrates the plausibility of the bristle model. 
 
Though the bristle construct appears to offer a plausible, 
phenomenological alternative for modeling joint friction, the 
authors recommend that further study be conducted prior to 
adoption in specific applications. Physical systems and 
their mathematical models should be exercised and 
validated using other methods and forms of excitation. 
 
Finally, to establish a useful mathematical model for 
friction, predictive rules for designing and analyzing joints in 
complex systems are required. 
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